IMPLEMENTATION OF QUALITY CONTROL PROTOCOL IN DIGITAL BREAST TOMOSYNTHESIS (DBT)

C. Stancampiano¹, L. Boschiroli², M. Campoleoni³ and L. O. Vismara²

- ¹ ASP Caltanissetta, Caltanissetta
- ² ASST Nord Milano, Milano
- ³Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano

PURPOSE:

The aim of this work is the implementation of a quality control protocol in DBT with the aid of different phantoms and the comparison of the results obtained on two mammography systems

MATERIALS AND METHODS:

We analyzed several aspects of DBT: X-ray output, image detector, image quality and dosimetry.

Equipments:

Two Hologic Selenia Dimension

- ASST Nord Milano
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico

Phantoms:

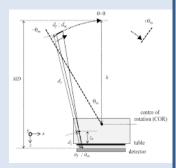
Home made phantom, CDMAM, Agatha Phantom

Image Type:

Reconstructed

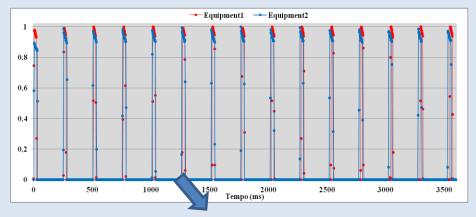
BTO ImageJ (\geq vers.1.49) Viewer Dicom \mathbf{CT}

gview (H) <u>SC</u> Gexpand (H)

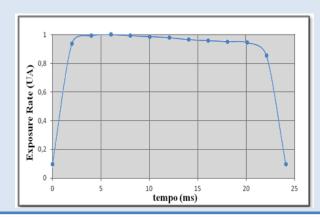

Projection

gview (H) gexpand(H)

Image type used in this work: SC


Focal Spot Motion:

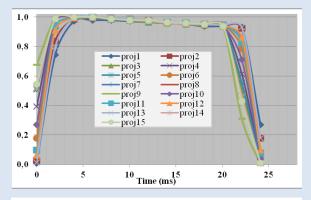
$$d_m = 2h\theta_m \frac{t_{proj}}{t_{scan}}$$



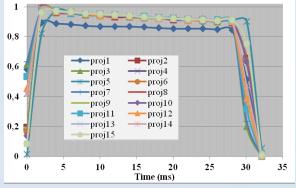
Multimeter measurements

1. T_{scan}:

2. T_{proj}:



 T_{proj} calculated as FWHM Equipment #2: first projection same T_{proj} but lower dose (- 5%)

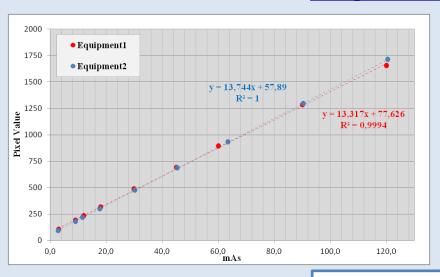

Exposure distribution per projection image:

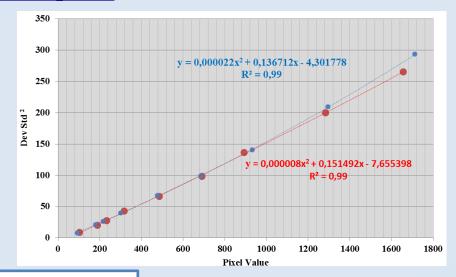
Multimeter measurements

Overlapping of the peaks



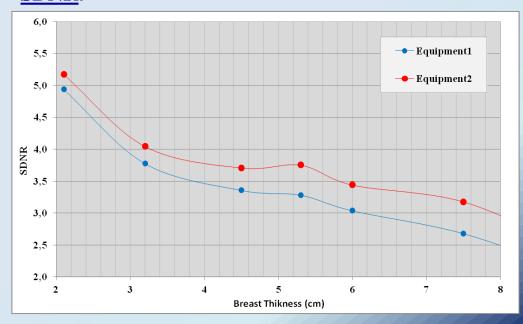
Equipment #1


Equipment #2

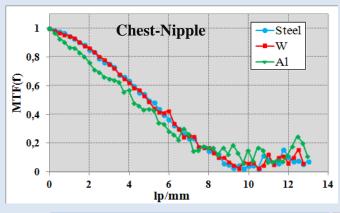

Projection image

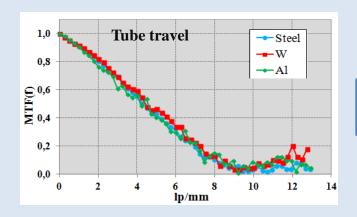
Ghost effect →>
Pixel Value not
to be used

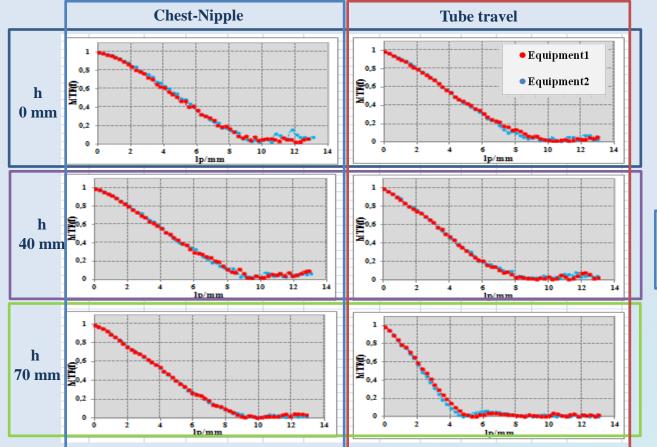
Image detector response:



The detector response functions are quite similar

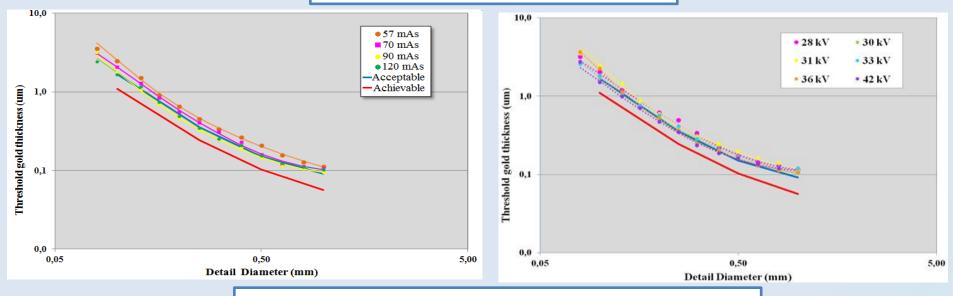

Equipment #2 seems to be slightly better optimized in terms of SDNR.

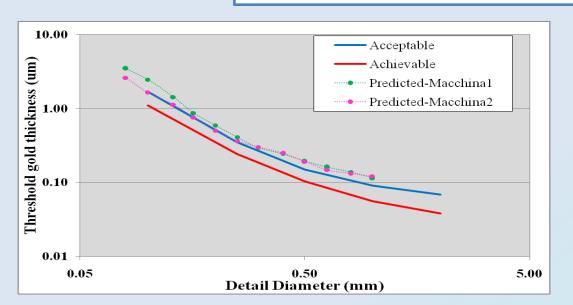

SDNR:


MTF in x-y plane:

Comparison of three different edges

Var % (W/Steel) < 5% Var%(W/Al) < 20 %

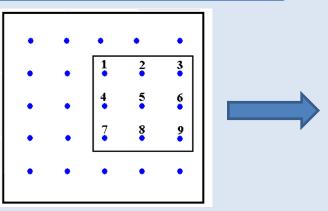

MTF for the two equipments are quiet similar


MIQuaELa

Stability of image quality in x-y plane (CDMAM Phantom):

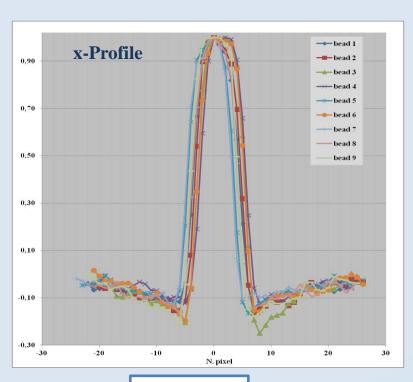
Perceptibility curve versus mAs and kV

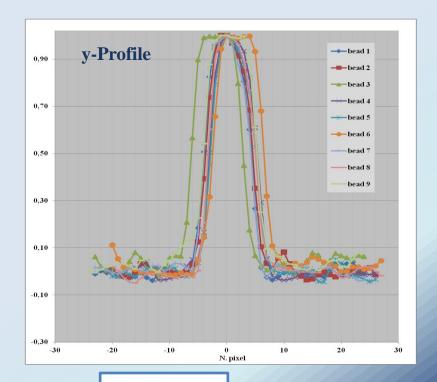
Perceptibility curve between acceptable and achievable can be obtained only with mAs > 90 or kV > 42



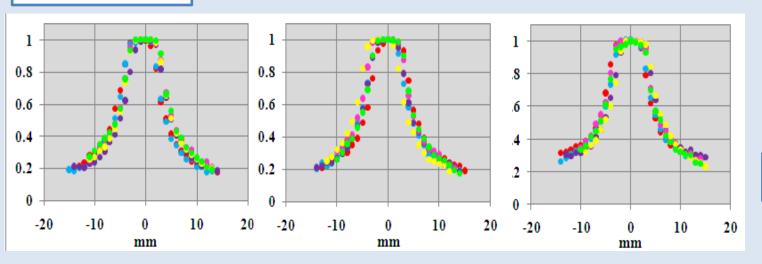
Equipment #2 for detail diameter < 0.5 mm between acceptable and achievable curve

Limits for FFDM


Resolution in x-y plane (home made phantom):


25 Al bead d=1mm, PMMA thickness 0.5 mm

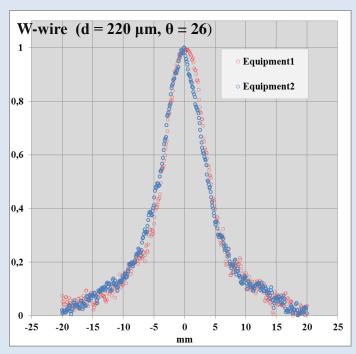
The two devices have the same performance

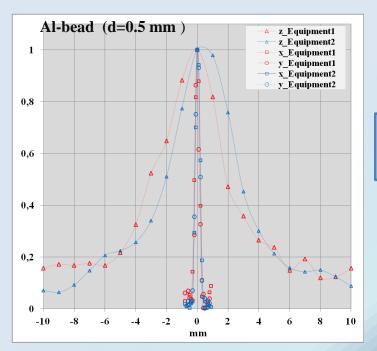


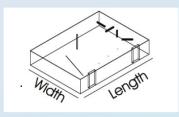
Var < 4 %

Var < 12 %

Resolution in z plane (home made phantom):

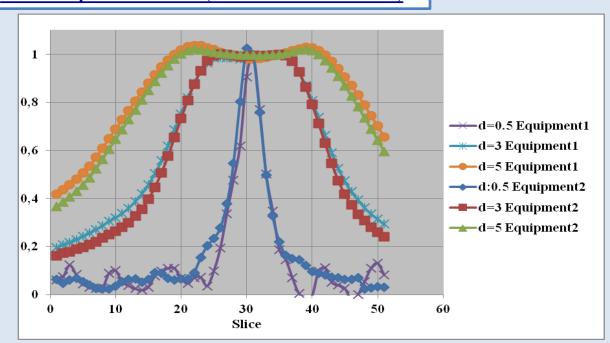

25 Al bead d=1mm





Differences found ≤ 10%

Resolution in x-y and z plane (Agatha phantom):



Differences found $\leq 5\%$

Artefact:

Artefact spread function (Al bead 0.5 - 3 - 5 mm)

$$ASF(z) = \frac{MPV_{Artifact}(z) - MPV_{BG}(z)}{MPV_{Feature}(z_0) - MPV_{BG}(z_0)}$$

Focus Slice

Artefact example

Non-Focus Slice

The two devices have the same performance

Average Glandular Dose:

SEV:

- 1. Multimeter 1 (solid state)
- 2. Multimeter 2 (solid state)
- 3. Ionization Chamber
- 4. Header DICOM : campo (0040,0314)

kV	Mult 1	Mult 2	I.C.	Header Dicom
26	0.52	0.42	0.47	0.43
28	0.58	0.44	0.51	0.47
30	0.62	0.48	0.55	0.51
31	0.64	0.49	0.57	0.52
33	0.68	0.52	0.61	0.56
36	0.73	0.55	0.66	0.61
42	1.12	0.61	0.74	0.69

SEV =	$\mathbf{X}_{1} \times ln \left(\frac{2\mathbf{Y}_{2}}{\mathbf{Y}_{0}} \right) - \mathbf{X}_{2} \times ln \left(\frac{2\mathbf{Y}_{1}}{\mathbf{Y}_{0}} \right)$
	$ln\!\!\left(\!rac{\mathbf{Y_2}}{\mathbf{Y_1}}\! ight)$

Multimeter #1 resulted not suitable for this measurements

$\underline{\mathbf{AGD:}}$ $D(\theta)$	$= Kgcst(\theta)$
---	-------------------

PMMA (mm)	I.C.	Mult2	Var %
20	1.1	1.0	-6.8%
30	1.3	1.2	-8.3%
40	1.8	1.7	-5.9%
45	2.5	2.3	-8.7%
50	3.0	2.8	-7.1%
60	4.5	4.2	-7.1%
70	5.7	5.2	-9.6%

PMMA (mm)	AGD Equipment #1 (mGy)		AGD Equipment #2 (mGy)			
	calc (mult.2)	displayed	Var % (disp.vs. calc)	calc. (i.c)	displayed	Var % (disp.vs. calc)
20	1.0	0.87	-18.4%	0.9	0.94	4.4%
30	1.2	1.01	-18.8%	1.0	1.03	3.0%
40	1.7	1.51	-12.6%	1.4	1.44	2.9%
45	2.3	2.01	-14.4%	1.9	1,91	0.0%
50	2.8	2.44	-14.7%	2.3	2.3	0.0%
60	4.2	3.80	-10.5%	3.5	3.63	3.7%
70	5.2	5.03	-3.4%	4.4	4.85	10.2%

 $\label{eq:continuous} Multimeter \ versus \ ionization \ chamber \\ Var \ \% < 10\%$

Calculated AGD versus displayed AGD Var % < 20%

- •The protocol is applicable to both equipments
- •The two equipments were comparable for most of the measured parameters
- •On both equipments the difference between the measured and displayed dose is less than 20%
- •It's very important to understand the characteristics of the available image formats to correctly choose images on which to perform the various tests.